If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3x2 + y2) * dx + (3x3 + -1y2 + 4xy) * dy = 0 Reorder the terms for easier multiplication: dx(3x2 + y2) + (3x3 + -1y2 + 4xy) * dy = 0 (3x2 * dx + y2 * dx) + (3x3 + -1y2 + 4xy) * dy = 0 Reorder the terms: (dxy2 + 3dx3) + (3x3 + -1y2 + 4xy) * dy = 0 (dxy2 + 3dx3) + (3x3 + -1y2 + 4xy) * dy = 0 Reorder the terms: dxy2 + 3dx3 + (4xy + 3x3 + -1y2) * dy = 0 Reorder the terms for easier multiplication: dxy2 + 3dx3 + dy(4xy + 3x3 + -1y2) = 0 dxy2 + 3dx3 + (4xy * dy + 3x3 * dy + -1y2 * dy) = 0 dxy2 + 3dx3 + (4dxy2 + 3dx3y + -1dy3) = 0 Reorder the terms: dxy2 + 4dxy2 + 3dx3 + 3dx3y + -1dy3 = 0 Combine like terms: dxy2 + 4dxy2 = 5dxy2 5dxy2 + 3dx3 + 3dx3y + -1dy3 = 0 Solving 5dxy2 + 3dx3 + 3dx3y + -1dy3 = 0 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Factor out the Greatest Common Factor (GCF), 'd'. d(5xy2 + 3x3 + 3x3y + -1y3) = 0Subproblem 1
Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0Subproblem 2
Set the factor '(5xy2 + 3x3 + 3x3y + -1y3)' equal to zero and attempt to solve: Simplifying 5xy2 + 3x3 + 3x3y + -1y3 = 0 Solving 5xy2 + 3x3 + 3x3y + -1y3 = 0 Move all terms containing d to the left, all other terms to the right. Add '-5xy2' to each side of the equation. 5xy2 + 3x3 + 3x3y + -5xy2 + -1y3 = 0 + -5xy2 Reorder the terms: 5xy2 + -5xy2 + 3x3 + 3x3y + -1y3 = 0 + -5xy2 Combine like terms: 5xy2 + -5xy2 = 0 0 + 3x3 + 3x3y + -1y3 = 0 + -5xy2 3x3 + 3x3y + -1y3 = 0 + -5xy2 Remove the zero: 3x3 + 3x3y + -1y3 = -5xy2 Add '-3x3' to each side of the equation. 3x3 + 3x3y + -3x3 + -1y3 = -5xy2 + -3x3 Reorder the terms: 3x3 + -3x3 + 3x3y + -1y3 = -5xy2 + -3x3 Combine like terms: 3x3 + -3x3 = 0 0 + 3x3y + -1y3 = -5xy2 + -3x3 3x3y + -1y3 = -5xy2 + -3x3 Add '-3x3y' to each side of the equation. 3x3y + -3x3y + -1y3 = -5xy2 + -3x3 + -3x3y Combine like terms: 3x3y + -3x3y = 0 0 + -1y3 = -5xy2 + -3x3 + -3x3y -1y3 = -5xy2 + -3x3 + -3x3y Add 'y3' to each side of the equation. -1y3 + y3 = -5xy2 + -3x3 + -3x3y + y3 Combine like terms: -1y3 + y3 = 0 0 = -5xy2 + -3x3 + -3x3y + y3 Simplifying 0 = -5xy2 + -3x3 + -3x3y + y3 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
d = {0}
| 2*108+x=13 | | 20qt=gal | | -6=3(2x-4) | | (3x+5)(5x^2-26x+5)=0 | | 0.5(x-5)+1=2(x-10)-3 | | 4x+8y=30.60 | | 3y=x+-12 | | 2c-31=c+43 | | 20qt= | | 2c-31=c+43 | | 26+8x= | | 12p(p=1/3) | | 2(24-6)+24=36 | | (3x^2+y^2)dx+((3x^3)-y^2+4xy)dy=0 | | 0.06s+450= | | (4m-1)/7=(m+2)/2 | | Y=6x+-1 | | -6x-41=-10x+31 | | 15(b+2)=2b-9 | | -2(-1/2)= | | u-14+u+6=u+38 | | -5(T-4)+8t=9t-7 | | -4n-6=-7n+2n | | -2(2)= | | -5m+17=4(m+11) | | -8-6x=16+8x-6x | | -3(x+1)+2(1-x)=7x+8 | | 2(r^2+1)=5x | | 2p-24=p+37 | | (5x-7)+(6x+10)= | | -3r-3+6r+13=1+6r | | 4=40+9x |